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Introduction

We want to build a model for high frequency observations of
financial data

Not easy: need to capture stylized features

– Concentration of zero-observations
– Diurnal patterns
– Skewness, heavy tail
– Seasonality (intra-weekly, monthly, quarterly...)
– Highly persistent dynamics (long-memory?)

An extension of DCS model works very well! Several advantages
over other existing methods.

Methods:

– Distribution decomposition at zero
– Unobserved components
– Dynamic cubic spline (Harvey and Koopman (1993))
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Data

Trade volume of IBM stock traded on the NYSE. The number
of shares traded.

Period: 5 consequtive trading weeks in February - March 2000

Sampling frequency: 30 seconds
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Empirical features

Diurnal U-shaped patterns
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Figure: IBM trade volume (left column) and the same series smoothed by the simple
moving average (right column). Time on the x-axis. Monday 20 - Friday 24 March
2000. Each day covers trading hours between 9.30am-4pm (in the New York local
time).
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Empirical features

Trade volume bottoms out at around 1pm.
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Figure: IBM trade volume (left column) and the same series smoothed by the simple
moving average (right column). Time on the x-axis. Wednesday 22 March 2000,
covering 9.30am-4pm (in the New York local time).
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Empirical features

Sample autocorrelation. Highly persistent.
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Figure: Sample autocorrelation of IBM trade volume. Sampling period: 28 February -
31 March 2000. The 200th lag corresponds approximately to 1.5 hours prior.
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Empirical features

Skewness, long upper-tail.
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Figure: Frequency distribution (left) and empirical cdf (right) of IBM trade volume.
Sampling period: 28 February - 31 March 2000.
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Empirical features

Sample statistics.

Observations (total) 19,500

Mean 10,539
Median 6,100
Maximum 1,652,100
Minimum 0
Std. Dev. 26,071
Skewness 29

99.9% sample quantile 293,654
Max - 99.9% quantile 1,358,446

Frequency of zero-obs. 0.47% (92 obs.)
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Intra-day DCS with dynamic cubic spline

Our model: intra-day DCS with dynamic cubic spline

Time index: intra-day time τ on t-th trading day as ·t,τ
τ = 0, . . . , I and t = 1, . . . ,T .
τ = 0 and τ = I : the moments of market open and close.
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Distribution decomposition at zero

Define CDF F : R≥0 → [0, 1] of a standard random variable X ∼ F

– the origin has a discrete mass of probability
– strictly positive support is captured by a conventional

continuous distribution

Formally,

PF (X = 0) = p p ∈ [0, 1]

PF (X > 0) = 1− p (1)

PF (X ≤ x |X > 0) = F ∗(x) x > 0

F ∗ : R>0 → [0, 1] is the cdf of a conventional standard continuous
random variable with constant parameter vector θ∗.

Decomposition technique: Amemiya (1973), Heckman (1974),
McCulloch and Tsay (2001) Rydberg and Shephard (2003),
Hautsch, Malec, and Schienle (2010)
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Our p is constant. OK as the number of zero-observations is small.

– Possible extension: time-varying pt,τ using logit link [Rydberg
and Shephard (2003), Hautsch, Malec, and Schienle (2010)]

Apply DCS filter only to positive observations.

– irregular term ut,τ : the score of F ∗

– λt,τ driven by ut,τ−11l{yt,τ−1>0}
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Unobserved components

Assumption 1: periodicity and autocorrelation in data are due to the
time-varying scale parameter αt,τ = exp(λt,τ ). Standardized observations
are iid and free of periodicity and autocorrelation.

⇒ Let λt,τ have a component structure to capture each feature of data.
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Unobserved components

Unobserved components:

yt,τ = εt,τ exp(λt,τ ), εt,τ |Ft,τ−1 ∼ iidF

λt,τ = δ + µt,τ + ηt,τ + st,τ

µt,τ : low-frequency component. Captures highly persistent
nonstationary dynamics

µt,τ = µt,τ−1 + κµut,τ−11l{yt,τ−1>0}

ηt,τ : stationary (autoregressive) component. A mixture of AR
components captures long-memory.

ηt,τ =
J∑

j=1

η
(j)
t,τ

η
(j)
t,τ = φ

(j)
1 η

(j)
t,τ−1 + φ

(j)
2 η

(j)
t,τ−2 · · ·+ φ(j)

m η
(j)

t,τ−m(j) + κ(j)
η ut,τ−11l{yt,τ−1>0}

for some J ∈ N>0 and m(j) ∈ N>0.

st,τ : periodic component capturing diurnal patterns

Ryoko Ito, Faculty of Economics, Cambridge University, UK Modeling dynamic diurnal patterns in high freq. fin. data 13/27



Dynamic cubic spline

st,τ : dynamic cubic spline (Harvey and Koopman (1993))

st,τ =
k∑

j=1

1l{τ∈[τj−1,τj ]} z j(τ) · γ†

k: number of knots

τ0 < τ1 < · · · < τk : coordinates of the knots along time-axis

γ† = (γ1, . . . , γk)>: y-coordinates (height) of the knots

z j : [τj−1, τj ]
k → Rk : k-dimensional vector of functions.

Conveys information about (i) polynomial order, (ii) continuity, (iii)
periodicity, and (iv) zero-sum conditions.

Bowsher and Meeks (2008): “special type of dynamic factor model”

Time-varying spline: let γ† → γ†
t,τ

where

γ†
t,τ

= γ†
t,τ−1

+ κ∗ · ut,τ−11l{yt,τ−1>0}
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Why use this spline?

Alternative options used by many:

Fourier representation

Sample moments for each intra-day bins

Diurnal pattern = deterministic function of intra-day time

(Andersen and Bollerslev (1998), Engle and Russell (1998), Shang et al.
(2001), Campbell and Diebold (2005), Engle and Rangel (2008),
Brownlees et al. (2011), Engle and Sokalska (2012).)

So why use this spline?

Allows for changing diurnal patterns

No need for a two-step procedure to “diurnally adjust” data

Formal test for the day-of-the-week effect. Compare shape of
dirunal patterns.

– Unlike the alternative: seasonal dummies. Test for level
differences. Used by many (e.g. Andersen and Bollerslev
(1998), Lo and Wang (2010))
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Estimation

Apply spline-DCS model to IBM trade volume data
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Estimation results

Assumption 1: ε̂t,τ = yt,τ/α̂t,τ has to be free of autocorrelation.
Satisfied - no autocorrelation in ε̂t,τ .
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Figure: Sample autocorrelation of trade volume (top), of ε̂t,τ (left). The 95%
confidence interval is computed at ±2 standard errors.
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Estimation results

F ∗ ∼ Burr distribution fits very well. PIT: F ∗(ε̂t,τ ) ∼ U[0,1].
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Figure: Empirical cdf of ε̂t,τ > 0 against cdf of Burr(ν̂, ζ̂) (left). Empirical cdf of the

PIT of ε̂t,τ > 0 computed under F∗(·; θ∗) ∼Burr(ν̂, ζ̂) (right).
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Compare with log-normal distribution

Log-normal distribution popular. Often used in literature. (e.g.
Alizadeh, Brandt, Diebold (2002))

But log-normal inferior to Burr.

PIT of ε̂t,τ far from U[0,1]. Why?
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Figure: Log(trade volume): The frequency distribution (left) and the QQ-plot (right).
Using non-zero observations re-centered around mean and standardized by one
standard deviation.

Ryoko Ito, Faculty of Economics, Cambridge University, UK Modeling dynamic diurnal patterns in high freq. fin. data 19/27



Estimated spline component

Reflects diurnal patterns that evolve over time.
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Figure: ŝt,τ : over 6 - 31 March 2000 (left) and of a typical day, Tuesday 14 March,
from market open to close (right).

Formal test for the day-of-the-week effect (a likelihood ratio test)
⇒ there is no statistically significant evidence in data.
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Overnight effect

Standard methods:

Dummy variables. Treat extreme observations as outliers.

Differentiate day and overnight jumps

Treat morning events as censored.

(e.g. Rydberg and Shephard (2003), Gerhard and Hautsch (2007), Boes,
Drost and Werker (2007).)

Issues:

It may take time for the overnight effect to diminish completely
during the day

Difficult to identify which observations are due to overnight
information
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Overnight effect
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Figure: Capturing overnight effect: trade volume (left) and α̂t,τ = exp(λ̂t,τ ) (right).

Periodic hikes in scale parameter α̂t,τ .
Reflects cyclical surge in market activity.
Overnight information interpreted as the elevated probability of extreme
events.
Advantage of the exponential link.
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Long memory

Two component specification for ηt,τ works well:

ηt,τ = η
(1)
t,τ + η

(2)
t,τ

η
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Figure: Autocorrelation function of η̂t,τ .

The degree of fractional integration in ηt,τ : d̂ = 0.140 (s.e. 0.057).
Picking up long-memory in data.
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Estimated coefficients

κµ 0.007 (0.002) γ†1;1,0 0.122 (0.070)

φ
(1)
1 0.561 (0.129) γ†2;1,0 -0.485 (0.079)

φ
(1)
2 0.400 (0.129) γ†3;1,0 -0.229 (0.058)

κ
(1)
η 0.053 (0.008) δ 9.254 (0.181)

φ
(2)
1 0.676 (0.046) ν 1.635 (0.016)

κ
(2)
η 0.091 (0.009) ζ 1.467 (0.042)
κ∗1 0.000 (0.001) p 0.0047 (0.0005)
κ∗2 -0.002 (0.001)
κ∗3 0.000 (0.001)

Parametric assumptions, identifiability requirements satisfied.
ηt,τ stationary.
p̂ is consistent with sample statistics.
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Out-of-sample performance

Our model and estimation results are stable

One-step ahead density forecasts (without re-estimation): very good
for 20 days ahead.

Multi-step ahead density forecasts: very good (i.e. PIT approx. iid

∼ U[0,1]) for one complete trading-day ahead (equivalent of 780
steps).

More details and discussions in the paper.
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Out-of-sample performance

Multi-step density forecasts
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1 day ahead
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5 days ahead
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Figure: Empirical cdf of the PIT of multi-step forecasts. Forecast horizons: 1 day
ahead (left), 5 days ahead (middle), 8 days ahead (right).
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Figure: Autocorrelation of the PIT of multi-step forecasts. Forecast horizons: 1.5
hours ahead (left), one day ahead (middle), five days ahead (right).
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Future directions

Model for higher-frequency: 1 second?
Asymptotic properties of MLE when DCS non-stationary
Multi-variate version: price and volume
Application to panel data (using composite likelihood?)
etc. etc.
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